Diketahuifungsi kuadrat: f (x) = -8x 2 - 16x - 1. karena a < 0, berarti grafik fungsi kuadrat berbentuk parabola yang menghadap ke bawah (terbuka ke bawah) Diketahui fungsi kuadrat: f (x) = 4x 2 - 8x + 3. karena a > 0, berarti grafik fungsi kuadrat berbentuk parabola yang menghadap ke atas (terbuka ke atas) Setelah mempelajari animasiPembahasanParabola terbuka ke atas jika koefisien x 2 bernilai negatif. Dari empat persamaan parabola di atas yangkoefisien x 2 bernilai negatif adalah y = − x 2 + 2 x + 6 dan y = − x 2 + 4 x + 4 . Dengan demikian, yang merupakan parabola terbuka ke atas adalah persamaan 2 dan 4. Oleh karena itu, jawaban yang tepat adalah terbuka ke atas jika koefisien bernilai negatif. Dari empat persamaan parabola di atas yang koefisien bernilai negatif adalah dan . Dengan demikian, yang merupakan parabola terbuka ke atas adalah persamaan 2 dan 4. Oleh karena itu, jawaban yang tepat adalah C. Teksvideo. jika melihat hal seperti ini maka dapat diselesaikan dengan cara perhatikan pada soalnya yang ditanya adalah sistem pertidaksamaan yang benar untuk daerah yang diarsir pada gambar ini maka pertama kita cari terlebih dahulu persamaan parabola nya dimana disini dia memotong sumbu x di dua Titik maka kita gunakan rumusnya adalah y = a dikali X minus x 1 x dengan x minus X2 maka pada Berikut ini adalah cara yang digunakan untuk menentukan sumbu simetri dan titik puncak/ fungsi kuadrat adalah fx = ax² + bx + cMenentukan sumbu simetri adalah x = -b/2aMenentukan nilai titik puncak adalah y0 = -b²- 4ac/4a atau y0= -D/4aBerdasarkan Buku Guru Matematika yang diterbitkan Kemdikbud, berikut ini adalah langkah-langkah menggambar grafik fungsi kuadratMenentukan bentuk parabola terbuka ke atas atau ke bawahMenentukan perpotongan grafik terhadap sumbu-x; yaitu, koordinat titik potongnya adalah x1,0 yang memenuhi persamaan fx1 = 0Menentukan perpotongan grafik terhadap sumbu-y; yaitu, koordinat titik potongnya adalah 0,y1 dengan y1 didapatkan berdasarkan persamaan y1 = f0Menentukan sumbu simetri dan nilai optimum dari grafik fungsiContoh soal1. Diketahui fungsi kuadrat y = 2x2 + 4x - 6. Tentukan sumbu simetrinya!Jawaban= x = -b/2a= x = -4/2x2= x = -4/4 = -1Jadi, sumbu simetrinya adalah x = -12. Diketahui fungsi kuadrat y = 3x2 + 6x + 5. Tentukan titik puncaknya!JawabanTentukan sumbu simetri terlebih dahulu= x = -b/2a= x = -6/2x3= x = -6/6 = -1Jadi, sumbu simetrinya adalah x = -1Tentukan titik puncak= y0 = -b²- 4ac/4a= y0 = -6²- 4x3x5/4x3= y0 = -36-60/12= y0 = -24/12= y0 = 2Jadi, titik puncaknya adalah -1, 2Menentukan Fungsi KuadratDi bawah ini adalah langkah selanjutnya untuk menentukan fungsi fungsi kuadrat melalui titik koordinat p, q, diperoleh fp = qJika fungsi kuadrat memotong sumbu x di p, 0 dan q, 0, fungsi kuadrat tersebut menjadi fx = ax − px − qJika fungsi kuadrat memotong sumbu y di 0, r, diperoleh f0 = rDengan mensubstitusikan nilai 0 pada fx, maka diperoleh f0 = a02 + b0 + c = c. Dengan begitu, diperoleh c = rJika fungsi kuadrat kuadrat tersebut memiliki titik puncak di s, t, diperoleh sumbu simetri fungsi kuadrat tersebut adalah garis x = sJika diketahui fungsi kuadrat tersebut melalui e, d, dengan menggunakan sifat simetri diperoleh titik koordinat yang lain hasil pencerminan koordinat e, d terhadap garis x = sContoh soal1. Suatu fungsi kuadrat fx = ax² - 4x + c mempunyai titik puncak di 1, 4. Tentukan nilai fx!JawabanPertama, substitusikan koordinat x pada titik puncak ke dalam rumus sumbu simetri untuk mendapatkan nilai a= 1 = -b/2a= 1 = -4/2a= 1 = 2/a= a = 2Kemudian, substitusikan nilai a dan koordinat puncak 1, 4 ke fungsi kuadrat fx = ax² - 6x + c untuk mendapatkan nilai c= 1 = 2x1² - 6x1 + c= 1 = 2 - 6 + c= 1 = -5 + c= 1 + 5 = c= 6 = cTerakhir, untuk menemukan nilai fx, substitusikan nilai a dan c ke dalam fx = ax² - 6x + c= fx = ax² - 6x + c= fx = 2x² - 6x + 3= fx = 2x² - 6x + 3Jadi, nilai fx = 2x² - 6x + 32. Suatu fungsi kuadrat fx = ax² - 8x + c mempunyai titik puncak di 2, 3. Tentukan nilai f3!JawabanPertama, substitusikan koordinat x pada titik puncak ke dalam rumus sumbu simetri untuk mendapatkan nilai a= 2 = -b/2a= 2 = -8/2a= 2 = 4/a= a = 2Kemudian, substitusikan nilai a dan koordinat puncak 2, 3 ke fungsi kuadrat fx = ax² - 8x + c untuk mendapatkan nilai c= 2 = 2x2² - 8x2 + c= 2 = 8 - 16 + c= 2 = -8 + c= 10 = c= 10 = cTerakhir, untuk menemukan nilai f3, substitusikan x = 3, nilai a dan c ke dalam fx = ax² - 8x + c= fx = ax² - 8x + c= f3 = 2x3² - 8x3 + 10= f3 = 18 - 24 + 10= f3 = 4Jadi, nilai f3 adalah 4Demikian penjelasan dan contoh fungsi kuadrat. Selamat berlatih detikers! Simak Video "Sosok Stanve, Jago Matematika Tingkat Dunia Asal Tangerang" [GambasVideo 20detik] erd/erd Nilaikoefisien yang ada di dalam rumus abc memiliki beberapa arti seperti berikut ini: a untuk menentukan cekung atau cembungnya parabila yang dibentuk oleh persamaan kuadrat. Apabila nilai a>0 maka parabola tersebut akan terbuka ke atas. Tetapi apabila a Pernah dibahas bahwa grafik dari suatu fungsi kuadrat adalah suatu kurva yang berbentuk parabola Melukis Grafik Fungsi Kuadrat Bagian I, Bagian II, dan Bagian III. Parabola sebenarnya adalah anggota terakhir dari irisan kerucut, yang juga telah didiskusikan pada pembahasan sebelumnya, yang dapat diperoleh dengan mengiris suatu kerucut dengan suatu bidang. Jika bidang yang mengiris kerucut sejajar dengan garis pelukis dari kerucut tersebut, maka irisan antara bidang dan kerucut membentuk suatu parabola. Pada pembahasan ini, kita akan menentukan karakteristik dari parabola vertikal dan horizontal. Parabola-parabola Vertikal Pada umumnya, pembahasan mengenai parabola diawali dengan pengenalan parabola-parabola dengan suatu sumbu vertikal, yang didefinisikan oleh persamaan y = ax2 + bx + c. Tidak seperti keluarga irisan kerucut lainnya, persamaan parabola tersebut merupakan suatu persamaan berderajat dua dalam x dan merupakan suatu fungsi. Karakteristik dari parabola-parabola yang demikian dapat dirangkum sebagai berikut. Karakteristik Parabola Vertikal Untuk suatu persamaan berderajat dua yang memiliki bentuk y = ax2 + bx + c memiliki grafik berupa parabola yang memiliki karakteristik-karakteristik sebagai berikut Terbuka ke atas jika a > 0 dan akan terbuka ke bawah jika a 0, terbukan ke kiri jika a 0 a = 1, maka parabola tersebut terbuka ke kanan, dan memotong sumbu-x di titik –4, 0. Selanjutnya kita tentukan titik potong dari parabola tersebut dengan sumbu-y dengan substitusi 0 ke dalam x. Diperoleh y = –4 dan y = 1. Sehingga titik potong parabola dengan sumbu-y adalah 0, –4 dan 0, 1. Sumbu simetrinya adalah y = –3/2 ∙ 1 = –1,5. Dengan substitusi y = –1,5 ke dalam persamaan diperoleh x = –6,25. Sehingga koordinat titik puncaknya adalah –6,25, –1,5. Sehingga grafik dari persamaan x = y2 + 3y – 4 adalah sebagai berikut. Dari grafik di atas, kita dapat menentukan bahwa domain dari relasi tersebut adalah {x x ≥ –6,25} dan rangenya adalah semua y anggota bilangan real. Serupa dengan parabola vertikal, persamaan dari parabola horizontal dapat dituliskan sebagai suatu transformasi x = ay ± k2 + h dengan melengkapkan kuadrat. Dalam kasus ini, pergeseran vertikalnya sejauh k satuan berlawanan dengan tanda, dan pergeseran horizontalnya sejauh h satuan searah dengan tandanya. Contoh 2 Menggambar suatu Parabola Horizontal dengan Melengkapkan Kuadrat Gambarlah grafik dari persamaan x = –2y2 – 8y – 9 dengan melengkapkan kuadrat. Pembahasan Dengan melihat persamaan tersebut, kita dapat menentukan bahwa grafik dari persamaan tersebut berupa parabola horizontal yang terbuka ke kiri dan memotong sumbu-x di titik –9, 0. Dengan melengkapkan kuadrat kita peroleh, Dari bentuk transformasi tersebut kita mendapatkan bahwa titik puncaknya adalah –1, –2 dan sumbu simetrinya y = –2. Dari informasi-informasi tersebut kita dapat menyimpulkan bahwa grafik persamaan tersebut tidak berpotongan dengan sumbu-y, lebih jelasnya dengan substitusi x = 0 kita peroleh, Persamaan terakhir di atas menunjukkan bahwa persamaan aslinya tidak memiliki akar. Dengan menggunakan sifat kesimetrian, titik –9, –4 juga terletak pada parabola. Sehingga grafik dari persamaan x = –2y2 – 8y – 9 dapat digambarkan sebagai berikut. Dari pembahasan di atas kita telah mendiskusikan tentang karakteristik dari parabola vertikal maupun horizontal. Pada contoh 1, kita telah berlatih dalam menggambar grafik dari parabola horizontal dengan menerapkan karakteristiknya. Selain itu, kita juga telah menggunakan transformasi dalam menggambar suatu parabola jika diketahui persamaannya dengan melengkapkan kuadrat. Semoga bermanfaat, yos3prens. Tentang Yosep Dwi Kristanto Tahun 2012 memulai blogging untuk menyediakan sumber belajar matematika online, yang semoga dapat memberikan kontribusi bagi pendidikan di Indonesia. Pengagum pendekatan kontekstual dalam proses pembelajaran. Keduanyabaik 7109 maupun 1097 adalah bilangan prima. Jumlah dari ke empat bilangan prima di atas adalah 792, dan ini merupakan jumlah terkecil dari himpunan empat bilangan prima yang memiliki sifat seperti yang dijelaskan di atas. kepala tempat percetakan membuka amplop baru, yang berisi selembar kertas pemeriksa warna besar berukuran A1
Untukgrafik hubungan v dan t yang bergerak dari kiri bawah ke kanan atas maka nilai percepatannya adalah positif yang berarti GLBB dipercepat. Akan tetapi ada juga grafik hubungan v dan t yang bergerak dari kiri atas ke kanan bawah, yaitu untuk GLBB diperlambat dengan nilai percepatan negatif. Simak grafiknya berikut
Bentukparabola yang terbentuk sendiri bisa terbuka ke atas/ke bawah ataupun terbuka ke kanan/ke kiri. Hampir sama dengan bentuk elips, bentuk parabola juga terdiri dari dua jenis, yaitu bentuk horizontal dan bentuk vertikal dengan dua letak titik pusat yang berbeda. Nah, berikut persamaan parabola berdasarkan letak titik pusatnya. Bentukumum persamaan irisan kerucut berupa parobola yang terbuka ke atas: (x - a) 2 = 4p (y - b) Dengan, a dan b = titik puncak parabola p = titik fokus parabola Diketahui bahwa parabola memiliki titik puncak (2, −4) dan melalui titik O (0, 0). Dengan menyesuaikan bentuk persamaan umum dari parabola dapar diperoleh persamaan (x - 2) 2 = 4p (y + 4) CaraBuka Password Parabola Biss Key Matrix Bakwan berikut saya jelaskan spesifikasi stb hg680-p, beserta cara root dan unlock Apalagi yang versi Ram 2GB Alat multifungsi bisa Nonton siaran Tv luar negeri,main game,browsing Selamat Belanjaa ^_^ Tag pencarian : Stb Indihome Full Set , Set Top Box Stb , Stb Android Tv Box , Tv Box Tv Android Darieksplorasi 6.1, 6.2, dan 6.3 kalian menemukan bahwa fungsi kuadrat terbuka ke atas jika dan terbuka ke bawah jika . Gambar 6.7 Dua Jenis Grafik Fungsi Kuadrat dengan Tanda Berbeda Untuk keadaan seperti apa grafik digunakan dalam kehidupan sehari-hari? Gerak mobil dimulai pada saat nol detik dan posisi nol m. Gerak menghasilkanMatematikaSekolah Menengah Atas terjawab Parabola berikut yang terbuka ke atas adalah a. y = 20 + 2x - 2x² b. y = 2x² - 6x - 20 c. y = -x² - 3x + 10 d. y = 1 - x - x² e. y = -x² + 3x pakai cara yaa 2 Lihat jawaban Iklan Anggrayni1 Mnurut saya c,,, mf kalau salah Iklan hanialvianti Parabola terbuka ke atas a>o jawabannya b. y= 2x²-6x-20rMPA7.